Best Bitcoin Mining Software - 2020 Edition | CaptainAltcoin

Financial Cryptography

[link]

Technical: Taproot: Why Activate?

This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given public key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

submitted by almkglor to Bitcoin [link] [comments]

[ Bitcoin ] Technical: Taproot: Why Activate?

Topic originally posted in Bitcoin by almkglor [link]
This is a follow-up on https://old.reddit.com/Bitcoin/comments/hqzp14/technical_the_path_to_taproot_activation/
Taproot! Everybody wants it!! But... you might ask yourself: sure, everybody else wants it, but why would I, sovereign Bitcoin HODLer, want it? Surely I can be better than everybody else because I swapped XXX fiat for Bitcoin unlike all those nocoiners?
And it is important for you to know the reasons why you, o sovereign Bitcoiner, would want Taproot activated. After all, your nodes (or the nodes your wallets use, which if you are SPV, you hopefully can pester to your wallet vendoimplementor about) need to be upgraded in order for Taproot activation to actually succeed instead of becoming a hot sticky mess.
First, let's consider some principles of Bitcoin.
I'm sure most of us here would agree that the above are very important principles of Bitcoin and that these are principles we would not be willing to remove. If anything, we would want those principles strengthened (especially the last one, financial privacy, which current Bitcoin is only sporadically strong with: you can get privacy, it just requires effort to do so).
So, how does Taproot affect those principles?

Taproot and Your /Coins

Most HODLers probably HODL their coins in singlesig addresses. Sadly, switching to Taproot would do very little for you (it gives a mild discount at spend time, at the cost of a mild increase in fee at receive time (paid by whoever sends to you, so if it's a self-send from a P2PKH or bech32 address, you pay for this); mostly a wash).
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash, so the Taproot output spends 12 bytes more; spending from a P2WPKH requires revealing a 32-byte public key later, which is not needed with Taproot, and Taproot signatures are about 9 bytes smaller than P2WPKH signatures, but the 32 bytes plus 9 bytes is divided by 4 because of the witness discount, so it saves about 11 bytes; mostly a wash, it increases blockweight by about 1 virtual byte, 4 weight for each Taproot-output-input, compared to P2WPKH-output-input).
However, as your HODLings grow in value, you might start wondering if multisignature k-of-n setups might be better for the security of your savings. And it is in multisignature that Taproot starts to give benefits!
Taproot switches to using Schnorr signing scheme. Schnorr makes key aggregation -- constructing a single public key from multiple public keys -- almost as trivial as adding numbers together. "Almost" because it involves some fairly advanced math instead of simple boring number adding, but hey when was the last time you added up your grocery list prices by hand huh?
With current P2SH and P2WSH multisignature schemes, if you have a 2-of-3 setup, then to spend, you need to provide two different signatures from two different public keys. With Taproot, you can create, using special moon math, a single public key that represents your 2-of-3 setup. Then you just put two of your devices together, have them communicate to each other (this can be done airgapped, in theory, by sending QR codes: the software to do this is not even being built yet, but that's because Taproot hasn't activated yet!), and they will make a single signature to authorize any spend from your 2-of-3 address. That's 73 witness bytes -- 18.25 virtual bytes -- of signatures you save!
And if you decide that your current setup with 1-of-1 P2PKH / P2WPKH addresses is just fine as-is: well, that's the whole point of a softfork: backwards-compatibility; you can receive from Taproot users just fine, and once your wallet is updated for Taproot-sending support, you can send to Taproot users just fine as well!
(P2WPKH and P2WSH -- SegWit v0 -- addresses start with bc1q; Taproot -- SegWit v1 --- addresses start with bc1p, in case you wanted to know the difference; in bech32 q is 0, p is 1)
Now how about HODLers who keep all, or some, of their coins on custodial services? Well, any custodial service worth its salt would be doing at least 2-of-3, or probably something even bigger, like 11-of-15. So your custodial service, if it switched to using Taproot internally, could save a lot more (imagine an 11-of-15 getting reduced from 11 signatures to just 1!), which --- we can only hope! --- should translate to lower fees and better customer service from your custodial service!
So I think we can say, very accurately, that the Bitcoin principle --- that YOU are in control of your money --- can only be helped by Taproot (if you are doing multisignature), and, because P2PKH and P2WPKH remain validly-usable addresses in a Taproot future, will not be harmed by Taproot. Its benefit to this principle might be small (it mostly only benefits multisignature users) but since it has no drawbacks with this (i.e. singlesig users can continue to use P2WPKH and P2PKH still) this is still a nice, tidy win!
(even singlesig users get a minor benefit, in that multisig users will now reduce their blockchain space footprint, so that fees can be kept low for everybody; so for example even if you have your single set of private keys engraved on titanium plates sealed in an airtight box stored in a safe buried in a desert protected by angry nomads riding giant sandworms because you're the frickin' Kwisatz Haderach, you still gain some benefit from Taproot)
And here's the important part: if P2PKH/P2WPKH is working perfectly fine with you and you decide to never use Taproot yourself, Taproot will not affect you detrimentally. First do no harm!

Taproot and Your Contracts

No one is an island, no one lives alone. Give and you shall receive. You know: by trading with other people, you can gain expertise in some obscure little necessity of the world (and greatly increase your productivity in that little field), and then trade the products of your expertise for necessities other people have created, all of you thereby gaining gains from trade.
So, contracts, which are basically enforceable agreements that facilitate trading with people who you do not personally know and therefore might not trust.
Let's start with a simple example. You want to buy some gewgaws from somebody. But you don't know them personally. The seller wants the money, you want their gewgaws, but because of the lack of trust (you don't know them!! what if they're scammers??) neither of you can benefit from gains from trade.
However, suppose both of you know of some entity that both of you trust. That entity can act as a trusted escrow. The entity provides you security: this enables the trade, allowing both of you to get gains from trade.
In Bitcoin-land, this can be implemented as a 2-of-3 multisignature. The three signatories in the multisgnature would be you, the gewgaw seller, and the escrow. You put the payment for the gewgaws into this 2-of-3 multisignature address.
Now, suppose it turns out neither of you are scammers (whaaaat!). You receive the gewgaws just fine and you're willing to pay up for them. Then you and the gewgaw seller just sign a transaction --- you and the gewgaw seller are 2, sufficient to trigger the 2-of-3 --- that spends from the 2-of-3 address to a singlesig the gewgaw seller wants (or whatever address the gewgaw seller wants).
But suppose some problem arises. The seller gave you gawgews instead of gewgaws. Or you decided to keep the gewgaws but not sign the transaction to release the funds to the seller. In either case, the escrow is notified, and if it can sign with you to refund the funds back to you (if the seller was a scammer) or it can sign with the seller to forward the funds to the seller (if you were a scammer).
Taproot helps with this: like mentioned above, it allows multisignature setups to produce only one signature, reducing blockchain space usage, and thus making contracts --- which require multiple people, by definition, you don't make contracts with yourself --- is made cheaper (which we hope enables more of these setups to happen for more gains from trade for everyone, also, moon and lambos).
(technology-wise, it's easier to make an n-of-n than a k-of-n, making a k-of-n would require a complex setup involving a long ritual with many communication rounds between the n participants, but an n-of-n can be done trivially with some moon math. You can, however, make what is effectively a 2-of-3 by using a three-branch SCRIPT: either 2-of-2 of you and seller, OR 2-of-2 of you and escrow, OR 2-of-2 of escrow and seller. Fortunately, Taproot adds a facility to embed a SCRIPT inside a public key, so you can have a 2-of-2 Taprooted address (between you and seller) with a SCRIPT branch that can instead be spent with 2-of-2 (you + escrow) OR 2-of-2 (seller + escrow), which implements the three-branched SCRIPT above. If neither of you are scammers (hopefully the common case) then you both sign using your keys and never have to contact the escrow, since you are just using the escrow public key without coordinating with them (because n-of-n is trivial but k-of-n requires setup with communication rounds), so in the "best case" where both of you are honest traders, you also get a privacy boost, in that the escrow never learns you have been trading on gewgaws, I mean ewww, gawgews are much better than gewgaws and therefore I now judge you for being a gewgaw enthusiast, you filthy gewgawer).

Taproot and Your Contracts, Part 2: Cryptographic Boogaloo

Now suppose you want to buy some data instead of things. For example, maybe you have some closed-source software in trial mode installed, and want to pay the developer for the full version. You want to pay for an activation code.
This can be done, today, by using an HTLC. The developer tells you the hash of the activation code. You pay to an HTLC, paying out to the developer if it reveals the preimage (the activation code), or refunding the money back to you after a pre-agreed timeout. If the developer claims the funds, it has to reveal the preimage, which is the activation code, and you can now activate your software. If the developer does not claim the funds by the timeout, you get refunded.
And you can do that, with HTLCs, today.
Of course, HTLCs do have problems:
Fortunately, with Schnorr (which is enabled by Taproot), we can now use the Scriptless Script constuction by Andrew Poelstra. This Scriptless Script allows a new construction, the PTLC or Pointlocked Timelocked Contract. Instead of hashes and preimages, just replace "hash" with "point" and "preimage" with "scalar".
Or as you might know them: "point" is really "public key" and "scalar" is really a "private key". What a PTLC does is that, given a particular public key, the pointlocked branch can be spent only if the spender reveals the private key of the given private key to you.
Another nice thing with PTLCs is that they are deniable. What appears onchain is just a single 2-of-2 signature between you and the developemanufacturer. It's like a magic trick. This signature has no special watermarks, it's a perfectly normal signature (the pledge). However, from this signature, plus some datta given to you by the developemanufacturer (known as the adaptor signature) you can derive the private key of a particular public key you both agree on (the turn). Anyone scraping the blockchain will just see signatures that look just like every other signature, and as long as nobody manages to hack you and get a copy of the adaptor signature or the private key, they cannot get the private key behind the public key (point) that the pointlocked branch needs (the prestige).
(Just to be clear, the public key you are getting the private key from, is distinct from the public key that the developemanufacturer will use for its funds. The activation key is different from the developer's onchain Bitcoin key, and it is the activation key whose private key you will be learning, not the developer's/manufacturer's onchain Bitcoin key).
So:
Taproot lets PTLCs exist onchain because they enable Schnorr, which is a requirement of PTLCs / Scriptless Script.
(technology-wise, take note that Scriptless Script works only for the "pointlocked" branch of the contract; you need normal Script, or a pre-signed nLockTimed transaction, for the "timelocked" branch. Since Taproot can embed a script, you can have the Taproot pubkey be a 2-of-2 to implement the Scriptless Script "pointlocked" branch, then have a hidden script that lets you recover the funds with an OP_CHECKLOCKTIMEVERIFY after the timeout if the seller does not claim the funds.)

Quantum Quibbles!

Now if you were really paying attention, you might have noticed this parenthetical:
(technical details: a Taproot output is 1 version byte + 32 byte public key, while a P2WPKH (bech32 singlesig) output is 1 version byte + 20 byte public key hash...)
So wait, Taproot uses raw 32-byte public keys, and not public key hashes? Isn't that more quantum-vulnerable??
Well, in theory yes. In practice, they probably are not.
It's not that hashes can be broken by quantum computes --- they're still not. Instead, you have to look at how you spend from a P2WPKH/P2PKH pay-to-public-key-hash.
When you spend from a P2PKH / P2WPKH, you have to reveal the public key. Then Bitcoin hashes it and checks if this matches with the public-key-hash, and only then actually validates the signature for that public key.
So an unconfirmed transaction, floating in the mempools of nodes globally, will show, in plain sight for everyone to see, your public key.
(public keys should be public, that's why they're called public keys, LOL)
And if quantum computers are fast enough to be of concern, then they are probably fast enough that, in the several minutes to several hours from broadcast to confirmation, they have already cracked the public key that is openly broadcast with your transaction. The owner of the quantum computer can now replace your unconfirmed transaction with one that pays the funds to itself. Even if you did not opt-in RBF, miners are still incentivized to support RBF on RBF-disabled transactions.
So the extra hash is not as significant a protection against quantum computers as you might think. Instead, the extra hash-and-compare needed is just extra validation effort.
Further, if you have ever, in the past, spent from the address, then there exists already a transaction indelibly stored on the blockchain, openly displaying the public key from which quantum computers can derive the private key. So those are still vulnerable to quantum computers.
For the most part, the cryptographers behind Taproot (and Bitcoin Core) are of the opinion that quantum computers capable of cracking Bitcoin pubkeys are unlikely to appear within a decade or two.
So:
For now, the homomorphic and linear properties of elliptic curve cryptography provide a lot of benefits --- particularly the linearity property is what enables Scriptless Script and simple multisignature (i.e. multisignatures that are just 1 signature onchain). So it might be a good idea to take advantage of them now while we are still fairly safe against quantum computers. It seems likely that quantum-safe signature schemes are nonlinear (thus losing these advantages).

Summary

I Wanna Be The Taprooter!

So, do you want to help activate Taproot? Here's what you, mister sovereign Bitcoin HODLer, can do!

But I Hate Taproot!!

That's fine!

Discussions About Taproot Activation

almkglor your post has been copied because one or more comments in this topic have been removed. This copy will preserve unmoderated topic. If you would like to opt-out, please send a message using [this link].
[deleted comment]
[deleted comment]
[deleted comment]
submitted by anticensor_bot to u/anticensor_bot [link] [comments]

MiniSwap -- A New Hybrid Incentive Model in DeFi

Cryptocurrency exchanges process over $20 billion in trade volume per day. Most of the transactions are going through centralized exchanges, where the users need to fully trust them for managing their assests and transactions. However, the risk of trusting these centralized exchanges has also been seen. For example, QuadrigaCX, which was the largest cryptocurrency exchange in Canada, lost $19 million of their customers' assets [1].
Decentralized Exchanges (DEXes) have been introduced to address this problem -- they allow traders to purchase and sell cryptocurrencies in a peer-to-peer manner, so no involvement of any trusted party is required. Atomic Swap is one of the promising technology for implementing a DEX. While it enables pure peer to peer trading, it also introduces problems such as unfairness and long confirmation latency. While existing work [2] has provided a solution towards a fair atomic swap protocol, the issue of long confirmation latency is inherent.
Another promising direction is leveraging liquidity pools. With liquidity pools, pairs of assets are reserved for trading. For any pair of assets supported by the liquidity pool, traders can exchange their assets without any third party. As traders can only perform the transactions if there are reserved assets, one core problem is how to attract liquidity providers to provide liquidity by reserving assets. It is not difficult to see that incentive [3,4], which has been a key component of all permissionless blockchains, can be equipped to incentivize liqudity providers. However, flawed incentive designs will lead to attacks and other concerns [5-13].
There are two main types of incentive designs, namely "trans-fee mining" and "liquidity mining". They are different from the Proof-of-X mining in blockchains for reaching consensus (a detailed analysis can be found in the survey [14]). Rather, they are used to incentivise users to join the ecosystem.
"Trans-fee mining" was proposed by FCoin in 2018 [15]. With FCoin, each time a transaction is created, 100% of its transaction fee will be returned in FCoin token to the payer as a reward. This is one incentive design to encourage traders to join the system. However, as FCoin may have no value to the trader, FCoin also introduces extra reward to all coin holders -- 80% of the transaction fee in its native currency (such as ETH) will be distributed to all coin holders. So, traders are incentivized to join the system, becoming a holder of FCoin token, and obtaining a share of the transaction fee of every transaction in the FCoin ecosystem.
While this had successful attracted traders, it is not sustainable. Rather than charging a trader to perform transactions, FCoin rewards traders. Profit-driven traders will create transactions at full speed to earn FCoin token and the share as a token holder. Indeed, the trading volume of FCoin was the top one among all exchange services, and the daily reward can be as high as 6000 BTC [16]. However, once all coins are minted, then the system would lose liveness as there is not enough supply to be distributed.
"Liquidity mining" aims at giving reward to the liquidity providers rather than the traders. There are different ways to implement liquidity mining. Compound [17] is a famous example of protocols deploying liquidity mining. With Compound, users become a liquidity provider by supply assets to a pool and obtain interests for its contribution (similar to depositing money into a bank). Liquidity providers first reserve some assets in the pool and obtain "cToken" of Compound which entitles the owner to an increasing quantity of the underlying asset. Users can use their "cToken" to borrow different assets available on the Compound and pay some interests to Compund. The borrowers may have some quick gains through the financial games [18]. Both borrowers and liquidity providers can withdraw their asset by trading them back with "cToken". Oners of "cToken" can also manage the business direction and decisions of Compound through weighted voting. The potential concern here is that rich users might be able to take over the control of the system.
Uniswap [19] is another popular DEX deploying liquidity mining. Uniswap incentivizes liquidity providers by giving them a share of the earned transaction fees. In particular, Uniswap changes each transaction a 0.3% fee, where 0.25% will be distributed to the liquidity providers, and 0.05% will go to the Uniswap account. One issue is how to incentivize traders. With Uniswap, traders are incentivized by the potential profit it can gain through the price difference between Uniswap and other exchanges. Uniswap price oracle is based on a constant function market makers [20,21], where the product of the number of reserved tokens is a constant. For example, if Uniswap has a pair of X token A and Y token B, then when a user using X' token A to buy Y' token B, the product of the reserved number of tokens should remain the same, i.e., XY = (X+X')(Y-Y'). The price of Uniswap (V1) is also defined in this way. This allows traders to speculate in the exchange market as the asset price on Uniswap is changed dynamically and is different from other exchanges. This, on the other hand, may have a security risk as the price can be easily manipulated. Uniswap (V2) fixed this problem by taking an accumulated price over a period of time [22]. However, as speculation/manipulation becomes harder, the trading volume may decrease.
MiniSwap [23] introduces a hybrid model (a mixture of "trans-fee mining" and "liquidity mining") to address the above issues. MiniSwap provides three types of rewards. For each trade with transaction fee f ETH in MiniSwap, a number of MiniSwap tokens (called MINI) worth 2f ETH will be minted. A (parameterized) portion of the tokens are given to the trader, and the rest are distribued to the liqudity providers. The transaction fee (f ETH) is used to exchange MINI in the liquidity pool. 50% of the obtained MINI will be distributed to all MINI holders, and the other 50% will be destroyed. In this way, both traders and liquidity providers are incentivized to join the ecosystem.
Recall that with FCoin, there is a problem when all coins are minted. MiniSwap has an upper bound (of 500,000 tokens) on the number of tokens can be created every day, and this limit reduces every month until a point where the limit (18,000 tokens) remains unchanged. This guarantees the sustainability of the system as the mining process can last for 100 years. The parameterized ratio of tokens as the reward to the trader and liquidity provider can also strengthen sustainability. It enables the system to dynamically balance the incentive of different parties in the system to make it more sustainable.
Overall, the MiniSwap hybrid model has taken the benefit of both "trans-fee mining" model and "liquidity mining" model, while eliminated the potential concerns. Formally defining and analyzing these models, e.g. through the game-theoretic approach [24], would be an interesting direction.
Reference
[1] The Guardian, Cryptocurrency investors locked out of $190m after exchange founder dies, 2019.
[2] Runchao Han, Haoyu Lin, Jiangshan Yu. On the optionality and fairness of Atomic Swaps, ACM Conference on Advances in Financial Technologies, 2019.
[3] Satoshi Nakamoto. 2008. Bitcoin: a peer-to-peer electronic cash system
[4] Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Verissimo. Repucoin: your reputation is your power. IEEE Transactions on Computers, 2019.
[5] Joseph Bonneau. Why Buy When You Can Rent? - Bribery Attacks on Bitcoin-Style Consensus. Financial Cryptography and Data Security - International Workshops on BITCOIN, VOTING, and WAHC, 2016.
[6] Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim. Bitcoin vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin Cash, IEEE Symposium on Security and Privacy (SP), 2019.
[7] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks via whale transactions. International Conference on Financial Cryptography and Data Security, 2017.
[8] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal Selfish Mining Strategies in Bitcoin. Financial Cryptography and Data Security, 2016.
[9] Ittay Eyal and Emin Gün Sirer. Majority Is Not Enough: Bitcoin Mining Is Vulnerable. Financial Cryptography and Data Security, 2014.
[10] Ittay Eyal. The Miner’s Dilemma. IEEE Symposium on Security and Privacy, 2015.
[11] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind Narayanan. On the Instability of Bitcoin Without the Block Reward. ACM SIGSAC Conference on Computer and Communications Security, 2016.
[12] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: generalizing selfish mining and combining with an eclipse attack. IEEE European Symposium on Security and Privacy, 2016.
[13] Runchao Han, Zhimei Sui, Jiangshan Yu, Joseph K. Liu, Shiping Chen. Sucker punch makes you richer: Rethinking Proof-of-Work security model, IACR Cryptol. ePrint Arch, 2019.
[14] Christopher Natoli, Jiangshan Yu, Vincent Gramoli, Paulo Jorge Esteves Veríssimo.
Deconstructing Blockchains: A Comprehensive Survey on Consensus, Membership and Structure. CoRR abs/1908.08316, 2019.
[15] FCoin, https://www.fcoin.pro
[16] The Block Crypto. Cryptocurrency exchange Fcoin expects to default on as much as $125M of users' bitcoin, 2020.
[17] Compound, https://compound.finance.
[18] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov, Lorenz Breidenbach, Ari Juels. Flash Boys 2.0: Frontrunning, Transaction Reordering, and Consensus Instability in Decentralized Exchanges. IEEE Symposium on Security and Privacy, 2020.
[19] Uniswap. https://uniswap.org
[20] Bowen Liu, Pawel Szalachowski. A First Look into DeFi Oracles. CoRR abs/2005.04377, 2020.
[21] Guillermo Angeris, Tarun Chitra. Improved Price Oracles: Constant Function Market Makers, CoRR abs/ 2003.10001, 2020.
[22] Uniswap V2.0 whitepaper. https://uniswap.org/whitepaper.pdf
[23] MiniSwap. https://www.miniswap.org
[24] Ziyao Liu, Nguyen Cong Luong, Wenbo Wang, Dusit Niyato, Ping Wang, Ying-Chang Liang, Dong In Kim. A Survey on Blockchain: A Game Theoretical Perspective. IEEE Access, 2019.
submitted by MINISWAP to u/MINISWAP [link] [comments]

TkeyNet: release date, a brief analysis of the system, future plans

TkeyNet: release date, a brief analysis of the system, future plans

https://preview.redd.it/ayym7cl9c1b51.png?width=700&format=png&auto=webp&s=367792bdc6acdcc670345cf1d6e12865d681b21b
During the development of the project, we published 3 documents about the technology that we are developing and preparing for the market. Some decisions were changed, but the main idea and goal remained the same — effective financial management.
Since the ICO boom, several years have passed, blockchain and cryptocurrencies have become synonymous and are perceived only as a means of earning money and the obvious advantages of using the technology itself in combination with others are of little interest to anyone. A user, business representatives, or some government officials associate the word “blockchain” directly with cryptocurrency or Bitcoin, without thinking about using systems built on a distributed registry in the current reality.
As we mentioned above, during the development of the project, several documents were published in which we announced our technology and clearly said that we are mixing modern concepts and approaching the market from an economic and scientific point of view, borrowing the best from Bitcoin, Ethereum, DASH, and other alternative currencies.
It is important to note that the concept of Bitcoin or Monero will be different from the concept of TkeyNet. These are other areas and practical application that some market participants may perceive as similar, but this is far from the case.
“When you innovate, you must be prepared for a prolonged lack of understanding of your actions on the part of your environment. You can do something you believe in, but for a long time, people who only wish you well may criticize your endeavors. When faced with such criticism, ask yourself — Are they right? And if you answer this question positively, accept the criticism and adjust your work accordingly. If the answer is negative, if you are firmly convinced of your rightness, you should prepare for a long defense, defending your positions. This approach is a key component of innovation.” ©
The idea of Bitcoin is beautiful, even if it has not yet been accepted by society as planned, but at least the idea of using Bitcoin as a means of accumulating value and storing savings has a place to be. Bitcoin actively strives for a high price mark and dominates the market by more than 50%, and this is a great result. Bitcoin set the necessary vector for many developers around the world, people were able to review the systems used and make their own decisions based on the Bitcoin core, for example, DASH or Ethereum, and users, in turn, learned about such a phenomenon as cryptocurrency.
In General, what was this introduction for? That TKEY should be considered as a universal asset, without defining it as a cryptocurrency. The question may immediately arise, why is this so? It doesn’t have explicit currency properties? Bitcoin also does not have the properties of cash but is called a cryptocurrency, and the types of applications of the peer-to-peer payment system Bitcoin and TkeyNet can differ significantly from each other.
https://preview.redd.it/3qfe582cc1b51.png?width=700&format=png&auto=webp&s=406f3c93314c473f9b9c9512e543fa33c6211067
The purpose of this publication is to tell you about the new features of TkeyNet, when the official transition to the new Protocol will take place, and why TKEY is a universal asset that simply needs liquidity? In General, we will talk about the clear advantages of switching to new technologies that we have been striving for so long and about your benefits of using them accordingly.

What is TkeyNet, and what are its advantages?

TkeyNet is an infrastructure that combines various solutions for users, businesses, and the public sector. Secure corporate networks, payment processors, liquidity, cross-border payments, trading tools, information security, instant exchanges, investment tools. One platform — millions of opportunities.
https://preview.redd.it/bwewihsdc1b51.png?width=700&format=png&auto=webp&s=4bfc1343b46a1eb51f0b972cac509cc1893f3fa4
When creating TkeyNet, we immediately turned to e-cash protocols, concepts of electronic currencies, considered the movements of Bank international transfers, and also drew attention to the obvious complexity of these systems. Therefore, to build a high-quality architecture of TkeyNet, the team took as a basis — blockchain technology, cryptography, payment and banking system, electronic cash protocols, exchanges, stock markets, DHT, and other p2p networks.
Now more than ever, businesses, users, and most financial market participants need reliable and modern systems that will meet the needs of the market.
For example, a user wants to quickly send funds to another user, and they do not want to think about how the blockchain works and who the “miners” are and what they do for the network. Any of us want to open the app and click a few buttons on the screen to pay for a particular service or send money to relatives abroad and the most importantly, know that the funds will reach you quickly and with a minimum Commission. Or let’s say you came to India, you have some funds in Bitcoin, but you would like to pay for your purchases in the local currency — the Indian rupee without extra conversions.
You are the owner of a payment system or Bank, and you want to receive % for conversion transactions, or banks want to create their consortium for cross-border payments. Either you are an entrepreneur and plan to open an exchange or trading platform for trading various assets, not necessarily digital, but, for example, gold and diamonds, or you are a young and purposeful startup team and want to quickly launch your Digital Bank, or you do not want to do business, and you have several million euros or dollars, you want to get % of their use.
https://preview.redd.it/hkv2xcpfc1b51.png?width=626&format=png&auto=webp&s=4ae497765a2d02b66046d5a112eb0dd4f1eeb0bc
TkeyNet makes these features available to all participants.
As we can see with you, there are quite a lot of use cases, and it may seem that TKEY is again torn into 100500 different directions, but this is far from the case. Here, a specific and clear direction is Finance and its movement.

How TkeyNet works

Remember, we said that — “to develop the platform on a global level, it is necessary to reach a consensus between government regulation, business, and society. We understand that it is impossible to achieve 100% of this, but it is possible to create favorable conditions favorable to all parties.”
How will the system work? All participants are connected to the system using TkeyNet technology that allows the financial gateway to control their transactions with increased speed, transparency, and efficiency. Independent verification servers constantly compare their transaction records. To hack the system, you will need to get access to all the devices that are logged in.
https://preview.redd.it/ltwgjrhhc1b51.png?width=700&format=png&auto=webp&s=413d03504eafa2b496cf99d837b6a2a1c9ba6818
TkeyNet solutions offer a cryptographically secure, end-to-end payment flow with the immutability of transactions and redundancy of information contained in them. It is developed to meet each financial gateway’s risk, privacy, and compliance requirements. Since the software is developed to be easily integrated into the existing financial infrastructure, it minimizes any integration costs and failures, and also meets international standards (ISO, etc.).

TkeyNet can be a neutral utility for financial institutions and systems

A gateway is an organization that allows users to invest money and take money out of a pool of liquidity. The gateway accepts currency deposits from users and issues balances to the TkeyNet blockchain.
TkeyNet Protocol provides a single source of truth for counterparties while maintaining the confidentiality of payment data of Bank clients.
TKEY is a universal bill (digital obligation) in the distributed registry TkeyNet.
Gateways install specialized software for interacting with the distributed registry and other system participants. Users, brokers, and other participants interact with the system via mobile or web interfaces. Gateways act as a link between the distributed registry, brokers, users, and other services that allow you to make quick transactions.
https://preview.redd.it/igdiw4tjc1b51.png?width=700&format=png&auto=webp&s=3a25f8f6b74a0cebf2450d05a7bf7c675547e624
The participants of the system make payments between themselves by using cryptographically signed transactions denominated in digital obligation. This type of transaction uses an internal registry.
In the case of working with Fiat currency and other assets, such as securities and precious metals, the registry records the amounts owed with assets presented as debt obligations. All accounts and transactions are cryptographically secure and verified algorithmically. Payments can only be authorized by the account holder, and all payments are processed automatically, without any third parties or intermediaries. The TkeyNet Protocol checks balances and accounts inside the system for transferring payments and sends payment notifications with minimal delay, which ensures fast calculations in the system.
For more specialized solutions can be created by the Central gateways and the gateways just. A Central gateway is an organization that allows users to invest money and take money out of the liquidity pool. Gateway is an organization that interacts with the Central gateway. Accepts and exchanges digital liabilities for other assets, such as securities.
TkeyNet globally reduces the number of different expenses and automates operational tasks, simplifies and reduces the cost of conducting monetary transactions, and improves traditional financial services.
We understand that it is not easy to tell all the principles of the TkeyNet system in a single publication, especially one that deals with neither one nor two issues. Therefore, you should consider this material as a basis, a base that will help you learn the information that is related to the TkeyNet Protocol most easily after the release of TkeyNet.
Moving a little away from corporate solutions, we suggest you recall some theses from our roadmap, which was published on the official website in the period from September 2018 to November 2019:
“The introduction of the exchanger in web wallets and the app will allow users to send money in one currency, and the recipient will receive it in another currency. For example, a user can buy Tkeycoin for dollars and exchange it for euros or Bitcoin or Ethereum at the current exchange rate.This functionality provides full control of funds through a single trusted and most secure source. Users no longer need to create multiple accounts on third-party resources to make an exchange into a particular currency.With the development of the network, it is possible to implement a multi-exchange that works on the principle of a payment bridge, when the user sends funds to Tkeycoin, and the recipient chooses the receiving currency, let’s say Litecoin, the funds are automatically converted” ©
https://preview.redd.it/htf048hmc1b51.png?width=700&format=png&auto=webp&s=9be3fe4895b5bece5c7c0d72548d4724e46556a7
We wrote above that TKEY can in principle be used as a universal asset, acting as a digital obligation or an asset as an exchange. By the way, references to this were also published on the official website — tkeycoin.com. In simple words, using one of our web interfaces, you can access TKEYRUB or TKEYUSD or any other asset, such as TKEYGOLD.
TKEYUSD, TKEYRUB, and TKEYGOLD are symbols and can be called differently in the system, for example, TKUSD or GOLDTKEY, so now they should be considered as an example.

Why is TKEY a universal asset?

As before, you can easily and quickly send TKEY to any member of the network and TKEY will have liquidity on the exchange also, TKEY allows you to fast exchange for euros, dollars, or other currencies.
https://i.redd.it/qapkdnvoc1b51.gif
For the interface, the applications will display functions of digital assets 1:1 to a particular currency, for example, TKEY to RUB, TKey to EUR, or TKEY to Dirhams or TKEY to the pound and vice versa, respectively.
https://preview.redd.it/0ipx86fqc1b51.png?width=700&format=png&auto=webp&s=a406e9c0f181a5d0b1ecde347511954ba61bf433
Therefore, as we said above, TKEY should not be regarded as a cryptocurrency, it is a universal unit inside the system TkeyNet, which may refer to transaction information as exchanges of obligations between banks and transaction TKEY -> TKEY between users, or to carry information about the exchange on the exchange or the exchange of digital assets or gold variations quite a lot, for most of the functions we describe in the release day TkeyNet.

What are the advantages for companies and developers?

First of all, we strive to open the doors for all platform participants. Only through synergy and cooperation can we accelerate the pace of development of the entire system and the introduction of new technologies in the market.
The platform will open doors for developers, who in turn can create technological solutions based on TkeyNet. A working environment will be created, and integration with the TkeyNet platform will be as easy as with the documented SDK or plug-ins. In the course of development, API documentation and ready-made SDKs for developers will be published.
https://i.redd.it/31x1k7gsc1b51.gif
This will make it easy to use and implement TkeyNet technology in various types of applications, for example, you want to create fast exchanges, we provide you with a framework, back-end, and API, and you create a front-end and launch your service, get your Commission, and are an independent project in the market. An important point is that integration into the existing infrastructure takes place while maintaining the decentralization of the TkeyNet system so that all its internal and external operations remain confidential and verified at the same time.

What are the advantages for users?

This means getting a universal tool for working with financial markets and easily converting an asset into any other asset: euro, dollars, or gold.

https://preview.redd.it/ol4964huc1b51.png?width=626&format=png&auto=webp&s=7fedfc9009201cb8c392be3f214f285d003c0d95
Also, TKEY owners should clearly understand that the more the system develops and there are more participants, namely the corporate segment, projects, and partners, the company will be more stable and thus the project assets will grow stronger.
The popularity of the platform and trust in it directly affects the price of assets, these are the key points of growth signs, the wider and more influential the spread of the company in various areas, the higher its performance in the market.

When will the long-awaited transition to TkeyNet take place?

What changes will be made to the products?

As you understand, everything will change, and this is for the better. At a minimum, products will become faster, lighter, safer, and more versatile.
Changes and new releases will be released as soon as they are ready. In TkeySpace, the TKEY libraries will be rewritten under TkeyNet. A web version of the wallet will appear, and eventually, an application with an exchange interface will be released for quick trading and exchange of various assets, not limited to digital ones. The Tkey Messenger will be adapted for TkeyNet and will be released for previously announced platforms: iOS, Android, Linux, macOS, Windows immediately with the ability to translate directly in the messenger. We will tell you about the messenger architecture on the release day.
All changes and releases will be published and announced after the release of TkeyNet.

What is radically new in TkeyNet?

There will be funds, the Protocol will become much more universal, as well as the TKEY itself. The Protocol will also exclude the possibility of attacks that could have been in Core 1.0, also, the principles of the platform will change. We will publish all technical specifications on the day of release.

Timeline for switching to TkeyNet

The transition to TkeyNet will not take place until August 2020. We will release news and instructions for switching to TkeyNet, so we recommend that you subscribe to the newsletter immediately: https://tkeycoin.com/en/newslette.

Listing on crypto exchanges

The liquidity of the TKEY asset is urgently needed for the development of the entire TkeyNet system, so the company will provide trading platforms for TKey trading and exchange.

Conclusion

The introduction of technologies using digital currencies will create the fastest transition of users and the corporate market to a new level.
FinTech direction makes it possible to manage finances in the most efficient and secure way, without violating the law. This system simplifies, reduces the cost of conducting monetary transactions, and actually improves traditional financial services.
The solution is interesting to everyone who works with money and is used to getting maximum efficiency from it: business, investors, traders, users of banking solutions, the corporate segment, etc. When using the system, large businesses get solutions for interacting with customers online, without using specialized points.
We, in turn, are open to various offers and cooperation on flexible terms. If you have any suggestions or interesting concepts, please contact us at [[email protected]](mailto:[email protected]).
submitted by tkeycoin to Tkeycoin_Official [link] [comments]

What is Blockchain Technology?

What is Blockchain Technology?
The original article appeared here: https://www.securities.io/what-is-blockchain-technology/
Its been almost ten years since Satoshi Nakamoto first introduced Blockchain technology to the world in his 2008 Bitcoin Whitepaper. Since that time, these revolutionary networks have gained popularity in both the corporate and governmental sectors. This growth is easily explained when you consider that blockchain technology provides the world with some unique advantages that were previously unimaginable. Consequently, today, you can find blockchain technology in nearly every sector of the global economy.

What is Blockchain Technology?

A blockchain is a network of computers that share a distributed ledger across all network participants (nodes). This strategy is far different than say, fiat currencies that originate from a centralized authority figure. Importantly, this ledger keeps an unbroken chain of transactions since the birth of the network. This “chain” of transactions grows larger as new “blocks” of transactions are approved and added to it.
Bitcoin Whitepaper
In order to approve new transactions, each node works together with others to validate new blocks. Additionally, the nodes also validate the current state of the entire blockchain. In order for a new block of transactions to be added to the blockchain, they must receive approval from 51% of the network’s nodes. Nodes are also referred to as miners. In this manner, blockchain networks are decentralized networks that provide unmatched security to the world of digital assets.

Security via Decentralization

Decentralization is an important aspect of blockchain technology because it makes these revolutionary ledgers immutable and unalterable. In fact, since there is no centralized attack vector, hacking a blockchain is nearly impossible. The larger the blockchain network, the more secure the data on it remains.
For example, let’s look at the world’s largest blockchain, Bitcoin. Currently, the Bitcoin blockchain has over 10,000 active nodes located across the globe. This distribution means that in order for an attacker to alter even just one tiny piece of information on the blockchain, they would need to successfully hack 5,000+ computers at once.
While this task may not be impossible for the quantum computers of the future, it’s so unprofitable that it makes no sense to even attempt such a monumental task. Additionally, on top of successfully hacking 5000+ computers at once, an attacker would also need a supercomputer to recalculate the new blockchain transactions in time to introduce them into the network. It would literally be more affordable to create a new cryptocurrency from scratch.

Consensus Mechanisms

One of the reasons why blockchain networks are so secure is the integration of consensus mechanisms. Consensus mechanisms are cryptographic protocols that leverage the participants of a blockchain network in securing its data. In the case of Bitcoin, the Proof-of-Work (PoW) consensus mechanism is used.

Proof-of-Work (PoW)

The Proof-of-Work consensus mechanism was revolutionary to the world of cryptography when it was first introduced years prior by Adam Back in his Hashcash whitepaper. In the concept, Back describes the integration of a mathematical equation to the network’s security protocols. In this way, every computer can show “proof” of their work securing the network.

Miner Rewards

It’s important to understand that nodes receive a reward for their mining efforts. These rewards adjust automatically depending on the network’s difficulty and value. In the case of Bitcoin, miners originally received 50 Bitcoin for their efforts. Today, this seems like fortune, but back in 2009, Bitcoin was only worth pennies. As the value of the token rises and the network goes, the mining rewards shrink. Today, Bitcoin miners receive 6.5 BTC if they add the next block to the chain.

SHA-256

Notably, every node validates and secures the blockchain, but only one gets to add the next block of transactions to the network. To determine who the next miner is that gets to add this block, every computer competes in a mathematical race to figure out the PoW equation. In the case of Bitcoin, the equation is known as SHA-256. Importantly, the first SHA algorithm dates back to Hashcash. This early version of the equation was known as SHA-1.
Notably, the SHA-256 equation is so difficult that it’s easier and more efficient for your computer to just make random guesses rather than attempting to figure out the equation directly. The answer to the equation must begin with a predetermined amount of 0s. In the Bitcoin blockchain, the equation’s answer must start with four zeros. However, if the network’s congestion rises, so does the difficulty of these equations. This difficulty adjusts by the addition of another zero at the beginning of the required SHA-256 answer.
Similarly to traditional commodities such as gold, there are costs that are associated with the creation and introduction of these digital assets into the market. These random guesses utilize intense computational power. This power equates to real-world costs such as electricity bills. Studies have shown that securing the Bitcoin network can use more electricity than required by entire countries. Luckily, over 80% of Bitcoin’s power consumption comes from renewable sources such as solar or hydroelectric. This cost of mining also adds measurable value to each Bitcoin.

Miners

As Bitcoin began to gain in profitability, its network’s computing power expanded significantly. In the beginning, nodes, also known as miners, could mine for Bitcoin using nothing more than your home PC. Eventually, miners realized that graphic cards were far better at the repetitive guessing required to figure out the SHA-256 algorithm. This led to a computational race in the market.

ASIC

Eventually, large blockchain firms such as Bitmain introduced Application Specific Integrated Circuit (ASIC) miners into the equation. These purpose-built miners were thousands of times more efficient at guessing the SHA-256 algorithm than the GPUs and CPUs before them. Consequently, their introduction created a scenario in which the average miner now needed to invest thousands in mining equipment to stay relevant.

Mining Pools

Luckily, some creative minds in the field began to think of ways to level the playing field out again. They developed “mining pools.” A mining pool is a network of miners that all share computational power for the common goal of mining blockchain transactions. Importantly, mining pool participants receive a percentage of the reward based on their contributions to the network’s overall hash (computational power).
Importantly, over the last three years, there has been a push to move away from power-hungry consensus mechanisms such as PoW. This desire to secure blockchains in a more efficient manner has led to the development of some truly unique consensus mechanisms in the sector.

Proof-of-Stake (PoS)

The Proof-of-Stake mechanism does away with the difficult mathematical algorithms and instead utilizes a more psychological approach to securing the network. In a PoS blockchain, users don’t need to compete mathematically to add the next block to the blockchain. Instead, PoS users “stake” their coins via network wallets to secure the network. The way staking works is simple.
Keeping a certain amount of coins in your wallet allows you to participate in transaction validations. The more coins you stake, the more likely the chances are you get to add the next block of transactions to the network. In most PoS systems, a miner from those with the most tokens staked at the time receives the chance to add the blocks.
The advantages of a PoS consensus mechanism are immediately evident. For one, you don’t need to pour tons of resources into your network to keep it safe. Additionally, since nodes are chosen based on their amount of staked coins, there is never a scenario in which a node gains anything from validating incorrect transactions. Basically, a hacker would have to fully invest in the cryptocurrency prior to attacking the network. In this way, PoS systems create a huge deterrent to attackers.

The Future of Blockchain Technology

Blockchain technology has come a long way from its early days as a means to secure cryptocurrency networks. Today, blockchain technology has numerous uses across every type of industry imaginable. Specifically, blockchain programs have impacted the logistical, financial, and data security sectors in a major way.

Blockchain Technology Logistics

Blockchain logistical systems are more efficient and cost-effective to operate than traditional paper-based models. In fact, the immutable and unalterable nature of blockchain tech makes it ideally suited to logistical tasks. Soon, you may be able to ascertain much more information regarding the creation and delivery of your products thanks to these new-age systems emerging.

Fundraising

Blockchain technology has also altered the way in which businesses raise funds. In a traditional corporate crowdfunding strategy such as an IPO, companies must balance between cost-effectiveness and participation. The inability to process smaller transactions meant that for the longest time, companies had to turn away potential investors. Nowadays, blockchain technology enables businesses to easily automate these procedures via smart contracts.

Smart Contracts

Smart Contracts feature preprogrammed protocols that execute when they receive a certain amount of cryptocurrency sent to their address. These contracts live on the blockchain and enable remarkable functionality. For example, in the case of fundraising, a smart contract can automate processes such as the approval of investors and the distribution of funds.

Blockchain Technology Today

You can expect to see further expansion of the blockchain sector in the coming months as more governments and institutions explore its benefits. For now, the blockchain revolution is well underway.
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

Anyone still under the illusion of Microsoft having been transformed into a kinder, more mutually beneficial partner, please read this patent.

WO2020060606 - CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020060606&tab=PCTDESCRIPTION
Before reading the following excerpts, keep this sequence of events in mind:
Master Slave (and we're not referring to HDDs here)
Step one: patent technology
Step two: sell slave IoT devices to consumers who readily purchase them especially after being promised that they'll be rewarded in cryotocurrency for their data.
Step three: collect data via Azure on unsuspecting human subjects' fMRI, EEG, body temperatures, EKG, sleep data, digitized health care information, consumer purchasing habits, reading and viewing preferences, social media activity and correlate with activities performed (tasks).
Step four: Use data to refine AI to profile human behavior, predict behavior and refine mind reading capabilities.
This article is actually incorporated in the patent!
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
Step five: Institute centralized global cryptocurrency financial system with no other alternatives in which to transact legally.
https://www.reddit.com/Bitcoin/comments/4nag4b/1988_economist_cover_predicting_a_world_currency/
https://www.economist.com/finance-and-economics/1998/09/24/one-world-one-money
Step six: To understand step six, Read George Orwell's "1984" or review the concept of an individual's freedoms being based not on the concept of natural rights but on their social credit scores.
Thank you Microsoft, Google, Apple, Amazon, Facebook.
Now the patent excerpts:
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
BACKGROUND [0001] A virtual currency (also known as a digital currency) is a medium of exchange implemented through the Internet generally, not tied to a specific government-backed “flat” (printed) currency such as the U.S. dollar or the Euro, and typically designed to allow instantaneous transactions and borderless transfer of ownership. One example of virtual currency is cryptocurrency, wherein cryptography is used to secure transactions and to control the creation of new units. [0002] Several cryptocurrencies exist. Among these, the most well known is a blockchain-based cryptocurrency. Most blockchain-based cryptocurrency is decentralized in the sense that it has no central point of control.
However, blockchain-based cryptocurrency can also be implemented in a centralized system having a central point of control over the cryptocurrency.
Bitcoin is one of the examples of blockchain-based cryptocurrency. It is described in a 2008 article by Satoshi Nakamoto, named“Bitcoin: A peer-to-Peer Electronic Cash System”.
[0003] A blockchain is a data structure that stores a list of transactions and can be thought of as a distributed electronic ledger that records transactions between source identifier(s) and destination identifier(s). The transactions are bundled into blocks and every block (except for the first block) refers back to or is linked to a prior block in the blockchain. Computer resources (or nodes, etc.) maintain the blockchain and cryptographically validate each new block and the transactions contained in the corresponding block. This validation process includes computationally solving a difficult problem that is also easy to verify and is sometimes called a“proof-of-work”. This process is referred to as“mining”. The mining may be a random process with low probability so that a lot of trial and error is required to solve a computationally difficult problem. Accordingly, the mining may require enormous amounts of computational energy. [0004] It is with respect to these and other general considerations that the following embodiments have been described. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
SUMMARY
[0005] Some exemplary embodiments of the present disclosure may use human body activity associated with a task provided to a user as a solution to“mining” challenges in cryptocurrency systems. For example, a brain wave or body heat emitted from the user when the user performs the task provided by an information or service provider, such as viewing advertisement or using certain internet services, can be used in the mining process. Instead of massive computation work required by some conventional cryptocurrency systems, data generated based on the body activity of the user can be a proof-of-work, and therefore, a user can solve the computationally difficult problem unconsciously. Accordingly, certain exemplary embodiments of the present disclosure may reduce computational energy for the mining process as well as make the mining process faster.
[0006] Systems, methods, and hardware aspects of computer readable storage media are provided herein for a cryptocurrency system using human body activity data. According to various embodiments of the present disclosure, a server may provide a task to a device of a user which is communicatively coupled to the server. A sensor communicatively coupled to or comprised in the device of the user may sense body activity of the user. Body activity data may be generated based on the sensed body activity of the user. A cryptocurrency system communicatively coupled to the device of the user may verify whether or not the body activity data satisfies one or more conditions set by the cryptocurrency system, and award cryptocurrency to the user whose body activity data is verified.
[0007] Examples are implemented as a computer process, a computing system, or as an article of manufacture such as a device, computer program product, or computer readable medium. According to one aspect, the computer program product is a computer storage medium readable by a computer system and encoding a computer program comprising instructions for executing a computer process. [0008] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
decentralized cryptocurrency networks or databases.
[0021] FIG. 1 illustrates an example environment 100 in which some exemplary embodiments of the present disclosure may be practiced. The example environment 100 includes, but is not limited to, at least one of task server 110, communication network 120, user device 130, sensor 140, and cryptocurrency system 150. [0022] Task server 110 may provide one or more tasks to user device 130 over communication network 120. For example, task server 110 may be at least one of a web server delivering or serving up web pages, an application server handling application operations between users and applications or databases, a cloud server, a database server, a file server, a service server, a game server implementing games or services for a game, and a media server delivering media such as streaming video or audio. The tasks provided by task server 110 will be discussed in more detail below.
[0023] Alternatively, cryptocurrency system 150 may provide one or more tasks to user device 130. For example, in a decentralized cryptocurrency network, the tasks may be proposed to user device 130 by miners (e.g. compute resources or nodes 210 of FIG. 2). In another example, in a centralized cryptocurrency system, a cryptocurrency server may send the tasks to user device 130.
[0024] Communication network 120 may include any wired or wireless connection, the internet, or any other form of communication. Although one network 120 is identified in FIG. 1, communication network 120 may include any number of different communication networks between any of the server, devices, resource and system shown in FIGS. 1 and 2 and/or other servers, devices, resources and systems described herein. Communication network 120 may enable communication between various computing resources or devices, servers, and systems. Various implementations of communication network 120 may employ different types of networks, for example, but not limited to, computer networks, telecommunications networks (e.g., cellular), mobile wireless data networks, and any combination of these and/or other networks. [0025] User device 130 may include any device capable of processing and storing data/information and communicating over communication network 120. For example, user device 130 may include personal computers, servers, cell phones, tablets, laptops, smart devices (e.g. smart watches or smart televisions). An exemplary embodiment of user device 130 is illustrated in FIG. 6.
[0026] Sensor 140 may be configured to sense the body activity of user 145. As illustrated in FIG. 1, sensor 140 may be a separate component from user device 130 and be operably and/or communicatively connected to user device 130. Alternatively, sensor 140 may be included and integrated in user device 130. For example, user device 130 may be a wearable device having sensor 140 therein. The sensor 140 may transmit information/data to user device 130. Sensor 140 may include, for example, but not limited to, functional magnetic resonance imaging (fMRI) scanners or sensors, electroencephalography (EEG) sensors, near infrared spectroscopy (NIRS) sensors, heart rate monitors, thermal sensors, optical sensors, radio frequency (RF) sensors, ultrasonic sensors, cameras, or any other sensor or scanner that can measure or sense body activity or scan human body. For instance, the fMRI may measure body activity by detecting changes associated with blood flow. The fMRI may use a magnetic field and radio waves to create detailed images of the body (e.g. blood flow in the brain to detect areas of activity). The material (http://news.berkely.edu/20l l/09/22/brain-movies/) shows one example of how the fMRI can measure brain activity associated with visual information and generate image data.
[0027] Cryptocurrency system 150 may include one or more processors for processing commands and one or more memories storing information in one or more cryptocurrency data structures. In some embodiments, cryptocurrency system 150 may be a centralized cryptocurrency system or network, for example, but not limited to, a server which may be privately run by a third party entity or the same entity that is running the task server 110. In other embodiments, cryptocurrency system 150 may be a publically accessible network system (e.g., a distributed decentralized computing system).
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
WO2020060606 - CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020060606&tab=PCTDESCRIPTION
Applicants * MICROSOFT TECHNOLOGY LICENSING, LLC[US/US]; One Microsoft Way Redmond, Washington 98052-6399, US
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
BACKGROUND [0001] A virtual currency (also known as a digital currency) is a medium of exchange implemented through the Internet generally, not tied to a specific government-backed “flat” (printed) currency such as the U.S. dollar or the Euro, and typically designed to allow instantaneous transactions and borderless transfer of ownership. One example of virtual currency is cryptocurrency, wherein cryptography is used to secure transactions and to control the creation of new units. [0002] Several cryptocurrencies exist. Among these, the most well known is a blockchain-based cryptocurrency. Most blockchain-based cryptocurrency is decentralized in the sense that it has no central point of control.
However, blockchain-based cryptocurrency can also be implemented in a centralized system having a central point of control over the cryptocurrency.
Bitcoin is one of the examples of blockchain-based cryptocurrency. It is described in a 2008 article by Satoshi Nakamoto, named“Bitcoin: A peer-to-Peer Electronic Cash System”.
[0003] A blockchain is a data structure that stores a list of transactions and can be thought of as a distributed electronic ledger that records transactions between source identifier(s) and destination identifier(s). The transactions are bundled into blocks and every block (except for the first block) refers back to or is linked to a prior block in the blockchain. Computer resources (or nodes, etc.) maintain the blockchain and cryptographically validate each new block and the transactions contained in the corresponding block. This validation process includes computationally solving a difficult problem that is also easy to verify and is sometimes called a“proof-of-work”. This process is referred to as“mining”. The mining may be a random process with low probability so that a lot of trial and error is required to solve a computationally difficult problem. Accordingly, the mining may require enormous amounts of computational energy.
[0004] It is with respect to these and other general considerations that the following embodiments have been described. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
SUMMARY
[0005] Some exemplary embodiments of the present disclosure may use human body activity associated with a task provided to a user as a solution to“mining” challenges in cryptocurrency systems. For example, a brain wave or body heat emitted from the user when the user performs the task provided by an information or service provider, such as viewing advertisement or using certain internet services, can be used in the mining process. Instead of massive computation work required by some conventional cryptocurrency systems, data generated based on the body activity of the user can be a proof-of-work, and therefore, a user can solve the computationally difficult problem unconsciously. Accordingly, certain exemplary embodiments of the present disclosure may reduce computational energy for the mining process as well as make the mining process faster.
[0006] Systems, methods, and hardware aspects of computer readable storage media are provided herein for a cryptocurrency system using human body activity data. According to various embodiments of the present disclosure, a server may provide a task to a device of a user which is communicatively coupled to the server. A sensor communicatively coupled to or comprised in the device of the user may sense body activity of the user. Body activity data may be generated based on the sensed body activity of the user. A cryptocurrency system communicatively coupled to the device of the user may verify whether or not the body activity data satisfies one or more conditions set by the cryptocurrency system, and award cryptocurrency to the user whose body activity data is verified.
[0007] Examples are implemented as a computer process, a computing system, or as an article of manufacture such as a device, computer program product, or computer readable medium. According to one aspect, the computer program product is a computer storage medium readable by a computer system and encoding a computer program comprising instructions for executing a computer process.
[0008] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
decentralized cryptocurrency networks or databases. [0021] FIG. 1 illustrates an example environment 100 in which some exemplary embodiments of the present disclosure may be practiced. The example environment 100 includes, but is not limited to, at least one of task server 110, communication network 120, user device 130, sensor 140, and cryptocurrency system 150.
[0022] Task server 110 may provide one or more tasks to user device 130 over communication network 120. For example, task server 110 may be at least one of a web server delivering or serving up web pages, an application server handling application operations between users and applications or databases, a cloud server, a database server, a file server, a service server, a game server implementing games or services for a game, and a media server delivering media such as streaming video or audio. The tasks provided by task server 110 will be discussed in more detail below.
[0023] Alternatively, cryptocurrency system 150 may provide one or more tasks to user device 130. For example, in a decentralized cryptocurrency network, the tasks may be proposed to user device 130 by miners (e.g. compute resources or nodes 210 of FIG. 2). In another example, in a centralized cryptocurrency system, a cryptocurrency server may send the tasks to user device 130.
[0024] Communication network 120 may include any wired or wireless connection, the internet, or any other form of communication. Although one network 120 is identified in FIG. 1, communication network 120 may include any number of different communication networks between any of the server, devices, resource and system shown in FIGS. 1 and 2 and/or other servers, devices, resources and systems described herein. Communication network 120 may enable communication between various computing resources or devices, servers, and systems. Various implementations of communication network 120 may employ different types of networks, for example, but not limited to, computer networks, telecommunications networks (e.g., cellular), mobile wireless data networks, and any combination of these and/or other networks.
[0025] User device 130 may include any device capable of processing and storing data/information and communicating over communication network 120. For example, user device 130 may include personal computers, servers, cell phones, tablets, laptops, smart devices (e.g. smart watches or smart televisions).
An exemplary embodiment of user device 130 is illustrated in FIG. 6.
[0026] Sensor 140 may be configured to sense the body activity of user 145. As illustrated in FIG. 1, sensor 140 may be a separate component from user device 130 and be operably and/or communicatively connected to user device 130. Alternatively, sensor 140 may be included and integrated in user device 130. For example, user device 130 may be a wearable device having sensor 140 therein. The sensor 140 may transmit information/data to user device 130. Sensor 140 may include, for example, but not limited to, functional magnetic resonance imaging (fMRI) scanners or sensors, electroencephalography (EEG) sensors, near infrared spectroscopy (NIRS) sensors, heart rate monitors, thermal sensors, optical sensors, radio frequency (RF) sensors, ultrasonic sensors, cameras, or any other sensor or scanner that can measure or sense body activity or scan human body. For instance, the fMRI may measure body activity by detecting changes associated with blood flow. The fMRI may use a magnetic field and radio waves to create detailed images of the body (e.g. blood flow in the brain to detect areas of activity). The material (http://news.berkely.edu/20l l/09/22/brain-movies/) shows one example of how the fMRI can measure brain activity associated with visual information and generate image data.
[0027] Cryptocurrency system 150 may include one or more processors for processing commands and one or more memories storing information in one or more cryptocurrency data structures. In some embodiments, cryptocurrency system 150 may be a centralized cryptocurrency system or network, for example, but not limited to, a server which may be privately run by a third party entity or the same entity that is running the task server 110. In other embodiments, cryptocurrency system 150 may be a publically accessible network system (e.g., a distributed decentralized computing system).
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
submitted by snowboardnirvana to MVIS [link] [comments]

Forbes miner's union plan, let you make it clear

Forbes miner's union plan, let you make it clear

https://preview.redd.it/51dwnbfy30451.png?width=900&format=png&auto=webp&s=79b57b192df4f4f11f0c7eb6ae849b169891f37c
Learn from famous teachers: Dao organization comes from Cosmos, poca and other well-known open source projects as well as a number of Wall Street financial practitioners
Grounded Technology: the core research direction of blockchain developers "cross chain"
Looking at finance: building distributed financial infrastructure
Layout of mining industry: "mining machine, mine field and mine pool", and strive to build a trinity of mining giant whale in 2020
In 2020, Forbes, the most concerned blockchain 4.0 project, is about to launch its global mining plan: Forbes has released its own ASIC chip bitcoin miner, and GFS hard disk miner is under development. At the same time, Forbes deployed mines in various regions of the world, including China, Southeast Asia, the United States, Australia, Russia and other places, to protect the "consensus".
Forbes receives f2pool Based on the deployment of mining machines and mines in 2020, the Forbes plan will be launched with the strong support of internationally renowned mining pools. It is expected to build into the world's largest, most open and transparent comprehensive mine pool within three years.
Miner and quarry
Blockchain is revolutionary. It allows anyone to own and transfer assets through an open financial network without a trusted third party. There are now thousands of blockchain based assets, and the main way to produce encrypted assets is mining. "Mining", i.e. encrypted assets, represents the wealth anchored by the blockchain system, "mining" is the most direct means for all the network to obtain wealth. When the miner obtains the right to pack the blocks according to the consensus rules based on cryptography, and packages all the transactions correctly, the mining behavior can obtain the reward (token) given by the blockchain system for its honest record of the blocks, and when the blockchain system gains value promotion due to the growth and development of the participants, the token obtained by the miner will also be given higher and higher The secondary market value of. The miners produced the initial system pass. Therefore, mining industry has become the most upstream of blockchain industry.
It can be said that mining industry is the foundation of the whole blockchain industry, which determines the 0 or 1 of a blockchain system. The mining equipment we use is the miner.
https://preview.redd.it/jvfi6mfg40451.png?width=780&format=png&auto=webp&s=19dad192911d4a9addc1d285c7db5491c75904b0
The miner is essentially a computer. Personal computer is generally composed of CPU, GPU, memory, hard disk, motherboard and other devices. Mineral machinery is no exception in nature. Any mineral machinery is composed of motherboard + hard disk + mining chip. However, due to different mining machines for different algorithms of digital assets, such as GPU (or ASIC) for BTC, ETH mining, CPU for Monroe money mining, hard disk for IPFs, Bhd and other projects mining.
Forbes mining machine in the main board, hard disk, mining chip innovation, Forbes uses dpoc consensus algorithm, belongs to the hard disk mining branch. Forbes with the strongest computing power is also in the field of the Internet of things. In foreign countries, everything is connected, hundreds of millions of intelligent devices are connected with each other, and they have super computing power and stability. Forbes mining machines all over the world will be very suitable for the deployment of Internet of things protocol, and become an important component of blockchain + Internet of things.
The mine site is the offline site for the deployment and maintenance of mining machines. But for ordinary investors who want to enter the market, mining is difficult because the mining threshold is too high. Personal users want to mine, there is a huge deployment threshold and technical threshold. First of all, individuals can not get excellent electricity price, high temperature and high noise environment makes it impossible for users to mine at home. In addition, mining needs to be configured and deployed, and expensive mining machines need to be maintained regularly. Musk said that Tesla is not selling cars, but workshops. Standardization is necessary for an industry to achieve success. In the early miner Alliance Plan, Forbes launched its own BTC ASIC chip and bitcoin miner. At the same time, combined with major capitals, it created a global standardized Forbes mine, which was deployed and maintained in a unified way, greatly extending the service life of Forbes miner. According to the simulation test, Forbes I miner can operate stably for more than six years, which greatly reduces the mining cost and enables investors to obtain higher profits. Later, Forbes will log in to the Forbes hard disk miner in the ore pool after the main network goes online.
Forbes miners Alliance Program
Miner Alliance Plan: during a period of time when Forbes main network goes online, users can use collateral parallel chain assets (such as usdt, BTC, etc.) to lease computing power to deploy mining machines in global mines. In the lease term, the deposit is returned by the smart contract according to the number of days, and the mining revenue is obtained by the early participating nodes.
Due to the cross chain implementation of Forbes, a large number of nodes need to be deployed in the early days to complete the information interaction between the relay chain and the parallel chain. And with the scale of ore pool access, the marginal cost of new mining machines will be lower and lower, and the revenue will grow steadily. Therefore, Forbes started the plan of Forbes miners' alliance, realized the rapid scale of the mining pool with market funds, and realized the stable growth of mining profits.
Through the miner alliance, users can rent mining machines. In the form of "deposit contract" to ensure that each miner's fund is dedicated, and at the same time, for each miner, it is considered to realize the real deposit settlement on schedule through the blockchain intelligent contract. After the Forbes miner generates mining revenue, the user will get kusd stable currency. In the operation plan of Forbes Dao, all the miners who join the mine have the opportunity to convert part of the profits into GFS with unlimited potential.
It is estimated that the early participants in the Forbes miner's program will have more than 1.6 times the deposit during the lease term of one year. It was asked where such gains came from. In fact, as a representative project of blockchain 4.0, the appreciation of GFS is inevitable. At present, the trading of GFS secondary market has increased by more than 10 times in a week. With the continuous extension of parallel chain and the continuous exploration of financial business, there is almost no doubt that the growth of GFS exceeds that of bitcoin in a year, even if it is halved. Forbes Dao mass produces Forbes super miner through the digital assets mortgaged by users. After the cost is removed, it covers more than 1.6 times of the revenue to nodes. Almost the secondary market value of GFS alone is far beyond.
In addition, the BTC value dug out in the miner's Alliance plan will become a stable support for the miner's Alliance Plan, and 2020 is known as bitcoin minus half a year. Get BTC while digging GFS. To say the least, the price of GFS has fluctuated, and the BTC dug out is actually stable. Not to mention that the layout of Forbes gold stable currency, Forbes DEX and so on has been dragged down, and the user's income is cashed at any time. Forbes' miner plan is a three-way and multi win business initiative, which is the distributed power.
submitted by forbeschain to u/forbeschain [link] [comments]

Microsoft patents scheme to usher in technocratic fascism via data from IoT sensor devices and centralized cryptocurrency system

WO2020060606 - CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA
https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2020060606&tab=PCTDESCRIPTION
Before reading the following excerpts, keep this sequence of events in mind:
Master Slave (and we're not referring to HDDs here)
Step one: patent technology
Step two: sell slave IoT devices to consumers who readily purchase them especially after being promised that they'll be rewarded in cryotocurrency for their data.
Step three: collect data via Microsoft Azure on unsuspecting human subjects' fMRI, EEG, body temperatures, EKG, sleep data, digitized health care information, consumer purchasing habits, reading and viewing preferences, social media activity and correlate with activities performed (tasks).
Step four: Use data to refine AI to profile human behavior, predict behavior and refine mind reading capabilities.
This article is actually incorporated in the patent!
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
Step five: Institute centralized global cryptocurrency financial system with no other alternatives in which to transact legally.
https://www.reddit.com/Bitcoin/comments/4nag4b/1988_economist_cover_predicting_a_world_currency/
https://www.economist.com/finance-and-economics/1998/09/24/one-world-one-money
Step six: To understand step six, read George Orwell's "1984" or review the concept of an individual's freedoms being based not on the concept of natural rights but on their social credit scores.
Thank you Microsoft, Google, Apple, Amazon, Facebook.
Now the patent excerpts:
CRYPTOCURRENCY SYSTEM USING BODY ACTIVITY DATA BACKGROUND [0001] A virtual currency (also known as a digital currency) is a medium of exchange implemented through the Internet generally, not tied to a specific government-backed “flat” (printed) currency such as the U.S. dollar or the Euro, and typically designed to allow instantaneous transactions and borderless transfer of ownership. One example of virtual currency is cryptocurrency, wherein cryptography is used to secure transactions and to control the creation of new units. [0002] Several cryptocurrencies exist. Among these, the most well known is a blockchain-based cryptocurrency. Most blockchain-based cryptocurrency is decentralized in the sense that it has no central point of control.
However, blockchain-based cryptocurrency can also be implemented in a centralized system having a central point of control over the cryptocurrency.
Bitcoin is one of the examples of blockchain-based cryptocurrency. It is described in a 2008 article by Satoshi Nakamoto, named“Bitcoin: A peer-to-Peer Electronic Cash System”.
[0003] A blockchain is a data structure that stores a list of transactions and can be thought of as a distributed electronic ledger that records transactions between source identifier(s) and destination identifier(s). The transactions are bundled into blocks and every block (except for the first block) refers back to or is linked to a prior block in the blockchain. Computer resources (or nodes, etc.) maintain the blockchain and cryptographically validate each new block and the transactions contained in the corresponding block. This validation process includes computationally solving a difficult problem that is also easy to verify and is sometimes called a“proof-of-work”. This process is referred to as“mining”. The mining may be a random process with low probability so that a lot of trial and error is required to solve a computationally difficult problem. Accordingly, the mining may require enormous amounts of computational energy.
[0004] It is with respect to these and other general considerations that the following embodiments have been described. Also, although relatively specific problems have been discussed, it should be understood that the embodiments should not be limited to solving the specific problems identified in the background.
SUMMARY
[0005] Some exemplary embodiments of the present disclosure may use human body activity associated with a task provided to a user as a solution to“mining” challenges in cryptocurrency systems.
For example, a brain wave or body heat emitted from the user when the user performs the task provided by an information or service provider, such as viewing advertisement or using certain internet services, can be used in the mining process. Instead of massive computation work required by some conventional cryptocurrency systems, data generated based on the body activity of the user can be a proof-of-work, and therefore, a user can solve the computationally difficult problem unconsciously. Accordingly, certain exemplary embodiments of the present disclosure may reduce computational energy for the mining process as well as make the mining process faster.
[0006] Systems, methods, and hardware aspects of computer readable storage media are provided herein for a cryptocurrency system using human body activity data. According to various embodiments of the present disclosure, a server may provide a task to a device of a user which is communicatively coupled to the server. A sensor communicatively coupled to or comprised in the device of the user may sense body activity of the user. Body activity data may be generated based on the sensed body activity of the user. A cryptocurrency system communicatively coupled to the device of the user may verify whether or not the body activity data satisfies one or more conditions set by the cryptocurrency system, and award cryptocurrency to the user whose body activity data is verified.
[0007] Examples are implemented as a computer process, a computing system, or as an article of manufacture such as a device, computer program product, or computer readable medium. According to one aspect, the computer program product is a computer storage medium readable by a computer system and encoding a computer program comprising instructions for executing a computer process.
[0008] This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. decentralized cryptocurrency networks or databases.
[0021] FIG. 1 illustrates an example environment 100 in which some exemplary embodiments of the present disclosure may be practiced. The example environment 100 includes, but is not limited to, at least one of task server 110, communication network 120, user device 130, sensor 140, and cryptocurrency system 150.
[0022] Task server 110 may provide one or more tasks to user device 130 over communication network 120. For example, task server 110 may be at least one of a web server delivering or serving up web pages, an application server handling application operations between users and applications or databases, a cloud server, a database server, a file server, a service server, a game server implementing games or services for a game, and a media server delivering media such as streaming video or audio. The tasks provided by task server 110 will be discussed in more detail below.
[0023] Alternatively, cryptocurrency system 150 may provide one or more tasks to user device 130. For example, in a decentralized cryptocurrency network, the tasks may be proposed to user device 130 by miners (e.g. compute resources or nodes 210 of FIG. 2). In another example, in a centralized cryptocurrency system, a cryptocurrency server may send the tasks to user device 130.
[0024] Communication network 120 may include any wired or wireless connection, the internet, or any other form of communication. Although one network 120 is identified in FIG. 1, communication network 120 may include any number of different communication networks between any of the server, devices, resource and system shown in FIGS. 1 and 2 and/or other servers, devices, resources and systems described herein. Communication network 120 may enable communication between various computing resources or devices, servers, and systems. Various implementations of communication network 120 may employ different types of networks, for example, but not limited to, computer networks, telecommunications networks (e.g., cellular), mobile wireless data networks, and any combination of these and/or other networks. [0025] User device 130 may include any device capable of processing and storing data/information and communicating over communication network 120. For example, user device 130 may include personal computers, servers, cell phones, tablets, laptops, smart devices (e.g. smart watches or smart televisions). An exemplary embodiment of user device 130 is illustrated in FIG. 6.
[0026] Sensor 140 may be configured to sense the body activity of user 145. As illustrated in FIG. 1, sensor 140 may be a separate component from user device 130 and be operably and/or communicatively connected to user device 130. Alternatively, sensor 140 may be included and integrated in user device 130. For example, user device 130 may be a wearable device having sensor 140 therein. The sensor 140 may transmit information/data to user device 130. Sensor 140 may include, for example, but not limited to, functional magnetic resonance imaging (fMRI) scanners or sensors, electroencephalography (EEG) sensors, near infrared spectroscopy (NIRS) sensors, heart rate monitors, thermal sensors, optical sensors, radio frequency (RF) sensors, ultrasonic sensors, cameras, or any other sensor or scanner that can measure or sense body activity or scan human body. For instance, the fMRI may measure body activity by detecting changes associated with blood flow. The fMRI may use a magnetic field and radio waves to create detailed images of the body (e.g. blood flow in the brain to detect areas of activity).
The material (http://news.berkely.edu/20ll/09/22/brain-movies/) shows one example of how the fMRI can measure brain activity associated with visual information and generate image data.
[0027] Cryptocurrency system 150 may include one or more processors for processing commands and one or more memories storing information in one or more cryptocurrency data structures. In some embodiments, cryptocurrency system 150 may be a centralized cryptocurrency system or network, for example, but not limited to, a server which may be privately run by a third party entity or the same entity that is running the task server 110. In other embodiments, cryptocurrency system 150 may be a publically accessible network system (e.g., a distributed decentralized computing system).
https://news.berkeley.edu/2011/09/22/brain-movies/ Scientists use brain imaging to reveal the movies in our mind
submitted by snowboardnirvana to conspiracy [link] [comments]

What Is Proof of Work (PoW)?

What Is Proof of Work (PoW)?
Contents
https://preview.redd.it/6xrtu2r56v151.png?width=1920&format=png&auto=webp&s=21a0175a00217614738e88b6c9d47fd07e0ae305
Introduction
Proof of Work (commonly abbreviated to PoW) is a mechanism for preventing double-spends. Most major cryptocurrencies use this as their consensus algorithm. That’s just what we call a method for securing the cryptocurrency’s ledger.
Proof of Work was the first consensus algorithm to surface, and, to date, remains the dominant one. It was introduced by Satoshi Nakamoto in the 2008 Bitcoin white paper, but the technology itself was conceived long before then.
Adam Back’s HashCash is an early example of a Proof of Work algorithm in the pre-cryptocurrency days. By requiring senders to perform a small amount of computing before sending an email, receivers could mitigate spam. This computation would cost virtually nothing to a legitimate sender, but quickly add up for someone sending emails en masse.

What is a double-spend?

A double-spend occurs when the same funds are spent more than once. The term is used almost exclusively in the context of digital money — after all, you’d have a hard time spending the same physical cash twice. When you pay for a coffee today, you hand cash over to a cashier who probably locks it in a register. You can’t go to the coffee shop across the road and pay for another coffee with the same bill.
In digital cash schemes, there’s the possibility that you could. You’ve surely duplicated a computer file before — you just copy and paste it. You can email the same file to ten, twenty, fifty people.
Since digital money is just data, you need to prevent people from copying and spending the same units in different places. Otherwise, your currency will collapse in no time.
For a more in-depth look at double-spending, check out Double Spending Explained.

Why is Proof of Work necessary?

If you’ve read our guide to blockchain technology, you’ll know that users broadcast transactions to the network. Those transactions aren’t immediately considered valid, though. That only happens when they get added to the blockchain.
The blockchain is a big database that every user can see, so they can check if funds have been spent before. Picture it like this: you and three friends have a notepad. Anytime one of you wants to make a transfer of whatever units you’re using, you write it down — Alice pays Bob five units, Bob pays Carol two units, etc.
There’s another intricacy here — each time you make a transaction, you refer to the transaction where the funds came from. So, if Bob was paying Carol with two units, the entry would actually look like the following: Bob pays Carol two units from this earlier transaction with Alice.
Now, we have a way to track the units. If Bob tries to make another transaction using the same units he just sent to Carol, everyone will know immediately. The group won’t allow the transaction to be added to the notepad.
Now, this might work well in a small group. Everyone knows each other, so they’ll probably agree on which of the friends should add transactions to the notepad. What if we want a group of 10,000 participants? The notepad idea doesn’t scale well, because nobody wants to trust a stranger to manage it.
This is where Proof of Work comes in. It ensures that users aren’t spending money that they don’t have the right to spend. By using a combination of game theory and cryptography, a PoW algorithm enables anyone to update the blockchain according to the rules of the system.

How does PoW work?

Our notepad above is the blockchain. But we don’t add transactions one by one — instead, we lump them into blocks. We announce the transactions to the network, then users creating a block will include them in a candidate block. The transactions will only be considered valid once their candidate block becomes a confirmed block, meaning that it has been added to the blockchain.
Appending a block isn’t cheap, however. Proof of Work requires that a miner (the user creating the block) uses up some of their own resources for the privilege. That resource is computing power, which is used to hash the block’s data until a solution to a puzzle is found.
Hashing the block’s data means that you pass it through a hashing function to generate a block hash. The block hash works like a “fingerprint” — it’s an identity for your input data and is unique to each block.
It’s virtually impossible to reverse a block hash to get the input data. Knowing an input, however, it’s trivial for you to confirm that the hash is correct. You just have to submit the input through the function and check if the output is the same.
In Proof of Work, you must provide data whose hash matches certain conditions. But you don’t know how to get there. Your only option is to pass your data through a hash function and to check if it matches the conditions. If it doesn’t, you’ll have to change your data slightly to get a different hash. Changing even one character in your data will result in a totally different result, so there’s no way of predicting what an output might be.
As a result, if you want to create a block, you’re playing a guessing game. You typically take information on all of the transactions that you want to add and some other important data, then hash it all together. But since your dataset won’t change, you need to add a piece of information that is variable. Otherwise, you would always get the same hash as output. This variable data is what we call a nonce. It’s a number that you’ll change with every attempt, so you’re getting a different hash every time. And this is what we call mining.
Summing up, mining is the process of gathering blockchain data and hashing it along with a nonce until you find a particular hash. If you find a hash that satisfies the conditions set out by the protocol, you get the right to broadcast the new block to the network. At this point, the other participants of the network update their blockchains to include the new block.
For major cryptocurrencies today, the conditions are incredibly challenging to satisfy. The higher the hash rate on the network, the more difficult it is to find a valid hash. This is done to ensure that blocks aren’t found too quickly.
As you can imagine, trying to guess massive amounts of hashes can be costly on your computer. You’re wasting computational cycles and electricity. But the protocol will reward you with cryptocurrency if you find a valid hash.
Let’s recap what we know so far:
  • It’s expensive for you to mine.
  • You’re rewarded if you produce a valid block.
  • Knowing an input, a user can easily check its hash — non-mining users can verify that a block is valid without expending much computational power.
So far, so good. But what if you try to cheat? What’s to stop you from putting a bunch of fraudulent transactions into the block and producing a valid hash?
That’s where public-key cryptography comes in. We won’t go into depth in this article, but check out What is Public-Key Cryptography? for a comprehensive look at it. In short, we use some neat cryptographic tricks that allow any user to verify whether someone has a right to move the funds they’re attempting to spend.
When you create a transaction, you sign it. Anyone on the network can compare your signature with your public key, and check whether they match. They’ll also check if you can actually spend your funds and that the sum of your inputs is higher than the sum of your outputs (i.e., that you’re not spending more than you have).
Any block that includes an invalid transaction will be automatically rejected by the network. It’s expensive for you to even attempt to cheat. You’ll waste your own resources without any reward.
Therein lies the beauty of Proof of Work: it makes it expensive to cheat, but profitable to act honestly. Any rational miner will be seeking ROI, so they can be expected to behave in a way that guarantees revenue.

Proof of Work vs. Proof of Stake

There are many consensus algorithms, but one of the most highly-anticipated ones is Proof of Stake (PoS). The concept dates back to 2011, and has been implemented in some smaller protocols. But it has yet to see adoption in any of the big blockchains.
In Proof of Stake systems, miners are replaced with validators. There’s no mining involved and no race to guess hashes. Instead, users are randomly selected — if they’re picked, they must propose (or “forge”) a block. If the block is valid, they’ll receive a reward made up of the fees from the block’s transactions.
Not just any user can be selected, though — the protocol chooses them based on a number of factors. To be eligible, participants must lock up a stake, which is a predetermined amount of the blockchain’s native currency. The stake works like bail: just as defendants put up a large sum of money to disincentivize them from skipping trial, validators lock up a stake to disincentivize cheating. If they act dishonestly, their stake (or a portion of it) will be taken.
Proof of Stake does have some benefits over Proof of Work. The most notable one is the smaller carbon footprint — since there’s no need for high-powered mining farms in PoS, the electricity consumed is only a fraction of that consumed in PoW.
That said, it has nowhere near the track record of PoW. Although it could be perceived as wasteful, mining is the only consensus algorithm that’s proven itself at scale. In just over a decade, it has secured trillions of dollars worth of transactions. To say with certainty whether PoS can rival its security, staking needs to be properly tested in the wild.

Closing thoughts

Proof of Work was the original solution to the double-spend problem and has proven to be reliable and secure. Bitcoin proved that we don’t need centralized entities to prevent the same funds from being spent twice. With clever use of cryptography, hash functions, and game theory, participants in a decentralized environment can agree on the state of a financial database.
submitted by D-platform to u/D-platform [link] [comments]

The Intellectual Foundation of Bitcoin比特幣的智識基礎. By Chapman Chen, HKBNews

The Intellectual Foundation of Bitcoin比特幣的智識基礎. By Chapman Chen, HKBNews

https://preview.redd.it/w6v3l8n3zxu41.jpg?width=2551&format=pjpg&auto=webp&s=fb0338a36a1a321d3781f43ff5eb6929d8b92edc
Summary: Bitcoin was invented by the anonymous Satoshi Nakamoto as recently as 2008, but it is backed up by a rich intellectual foundation. For instance, The 1776 First Amendment separates church and state, and contemporary American liberation psychologist Nozomi Hayase (2020) argues that money and state should similarly be separated. Just as Isaac Newton’s study of alchemy gave rise to the international gold standard, so has the anonymous creator Satoshi Nakamoto's desire for a “modernized gold standard” given rise to Bitcoin. Indeed, Bloomberg's 2020 report confirms Bitcoin to be gold 2.0. Montesquieu (1774) asserted that laws that secure inalienable rights can only be found in Nature, and the natural laws employed in Bitcoin include its consensus algorithm and the three natural laws of economics (self-interest, competition, and supply and demand). J.S. Mill (1859) preferred free markets to those controlled by governments. Ludwig von Mises (1951) argued against the hazards of fiat currency, urging for a return to the gold standard. Friedrich Hayek (1984) suggested people to invent a sly way to take money back from the hands of the government. Milton Friedman (1994) called for FED to be replaced by an automatic system and predicted the coming of a reliable e-cash. James Buchanan (1988) advocated a monetary constitution to constrain the governmental power of money creation. Tim May (1997) the cypherpunk proclaimed that restricting digital cash impinges on free speech, and envisioned a stateless digital form of money that is uncensorable. The Tofflers (2006) pictured a non-monetary economy. In 2016, UCLA Professor of Finance Bhagwan Chowdhry even nominated Satoshi for a Nobel Prize.
Full Text:
Separation between money and state
The 1791 First Amendment to the U.S. Constitution enshrines free speech and separates church and state, but not money and state. "Under the First Amendment, individuals’ right to create, choose their own money and transact freely was not recognized as a part of freedom of expression that needs to be protected," Japanese-American liberation psychologist Nozomi Hayase (2020) points out (1).
The government, banks and corporations collude together to encroach upon people's liberties by metamorphosing their inalienable rights into a permissioned from of legal rights. Fiat currencies function as a medium of manipulation, indulging big business to generate market monopolies. "Freedom of expression has become further stifled through economic censorship and financial blockage enacted by payment processing companies like Visa and MasterCard," to borrow Hayase's (2020) words.
Satoshi is a Modern Newton
Although most famous for discovering the law of gravity, Isaac Newton was also a practising alchemist. He never managed to turn lead into gold, but he did find a way to transmute silver into gold. In 1717, Newton announced in a report that, based on his studies, one gold guinea coin weighed 21 shillings. Just as Isaac Newton’s study of alchemy gave rise to the international gold standard, so has the desire for a “modernized gold standard” given rise to Bitcoin. "In a way, Satoshi is a modern Newton. They both believed trust is best placed in the unchangeable facets of our economy. Beneath this belief is the assumption that each individual is their own best master," as put by Jon Creasy (2019) (2).
J.S. Mill: free markets preferable to those controlled by governments
John Stuart Mill (1806-1873) the great English philosopher would be a Bitcoiner were he still around today. In On Liberty (1859), Mill concludes that free markets are preferable to those controlled by governments. He argues that economies function best when left to their own devices. Therefore, government intervention, though theoretically permissible, would be counterproductive. Bitcoin is precisely decentralized or uncontrolled by the government, unconfiscatable, permissonless, and disinflationary. Bitcoin regulates itself spontaneously via the ordinary operations of the system. "Rules are enforced without applying any external pressure," in Hayase's (2020) words.
Ludwig von Mises (1958): Liberty is always Freedom from the Government
In The Free Market and its Enemies, theoretical Austrian School economist Ludwig von Mises (1951) argues against the hazards of fiat currency, urging for a return to the gold standard. “A fiat money system cannot go on forever and must one day come to an end,” Von Mises states. The solution is a return to the gold standard, "the only standard which makes the determination of the purchasing power of money independent of the changing ideas of political parties, governments, and pressure groups" under present conditions. Interestingly, this is also one of the key structural attributes of Bitcoin, the world’s first, global, peer-to-peer, decentralized value transfer network.
Actually, Bloomberg's 2020 report on Bitcoin confirms that it is gold 2.0. (3)
Von Mises prefers the price of gold to be determined according to the contemporaneous market conditions. The bitcoin price is, of course, determined across the various global online exchanges, in real-time. There is no central authority setting a spot price for gold after the which the market value is settled on among the traders during the day.
Hayek: Monopoly on Currency should End
Austrian-British Nobel laureate Friedrich Hayek’s theory in his 1976 work, Denationalization of Money, was that not only would the currency monopoly be taken away from the government, but that the monopoly on currency itself should end with multiple alternative currencies competing for acceptance by consumers, in order "to prevent the bouts of acute inflation and deflation which have played the world for the past 60 years." He forcefully argues that if there is no free competition between different currencies within any nation, then there will be no free market. Bitcoin is, again, decentralized, and many other cryptocurrencies have tried to compete with it, though in vain.
In a recently rediscovered video clip from 1984, Hayek actually suggested people to invent a cunning way to take money out of the hands of the government:- “I don’t believe we shall ever have a good money again before we take the thing out of the hands of government, that is, we can’t take them violently out of the hands of government, all we can do is by some sly roundabout way introduce something they can’t stop” (4). Reviewing those words 36 years hence and it is difficult not to interpret them in the light of Bitcoin.
Milton Friedman Called for FED to be Replaced by an Automatic System
Nobel laureate economist Milton Friedman (1994) was critical of the Federal Reserve due to its poor performance and felt it should be abolished (5). Friedman (1999) believed that the Federal Reserve System should ultimately be replaced with a computer program, which makes us think of the computer code governing Bitcoin (6).[\](https://en.wikipedia.org/wiki/Criticism_of_the_Federal_Reserve#cite_note-:2-12) He (1970) favored a system that would automatically buy and sell securities in response to changes in the money supply. This, he argued, would put a lid on inflation, setting spending and investment decisions on a surer footing (7). Bitcoin is exactly disflationary as its maximum possible supply is 21 million and its block reward or production rate is halved every four years.
Friedman passed away before the coming of bitcoin, but he lived long enough to see the Internet’s spectacular rise throughout the 1990s. “I think that the Internet is going to be one of the major forces for reducing the role of government," said Friedman in a 1999 interview with NTU/F. On the same occasion, he sort of predicted the emergence of Bitcoin, "The one thing that’s missing, but that will soon be developed, is a reliable e-cash, a method whereby on the Internet you can transfer funds from A to B, without A knowing B or B knowing A." (8)
Of course, Friedman didnt predict the block chain, summed up American libertarian economist Jeffery Tucker (2014). “But he was hoping for a trustless system. He saw the need. (9).
Bitcoin Computer Code as Constitution in the Buchananian Sense
American economist cum Nobel laureate James Buchanan (1988) advocates constitutional constraints on the governmental power to create money (10). Buchanan distinguishes a managed monetary system—a system “that embodies the instrumental use of price-level predictability as a norm of policy”—from an automatic monetary system, “which does not, at any stage, involve the absolute price level” (Buchanan 1962, 164–65). Leaning toward the latter, Buchanan argues that automatic systems are characterized by an organization “of the institutions of private decision-making in such a way that the desired monetary predictability will emerge spontaneously from the ordinary operations of the system” (Buchanan 1962, 164). Again, "Bitcoin regulates itself through the spontaneous force of nature, flourishing healthy price discovery and competition in the best interest of everyone" (Hayase 2020).
Shruti Rajagopalan (2018) argues that the computer code governing how the sundry nodes/computers within the Bitcoin network interact with one another is a kind of monetary constitution in the Buchananian sense. One of Buchanan's greatest inputs is to differentiate the choice of rules from the choice within rule (Buchanan 1990). One may regard the Bitcoin code as a sort of constitution and "the Bitcoin network engaging in both the choice of rules and choice within rules" (Rajagopalan 2018) (11).
Tim May: Restricting Digital Cash may Impinge on Free Speech
Cypherpunks are activists who since the 1980s have advocated global use of strong cryptography and privacy-enhancing technologies as a route to social and political liberation. Tim May (Timothy C. May [1951-2018]), one of the influential cypherpunks published The Crypto Anarchist Manifesto in September 1992, which foretold the coming of Bitcoin (12). Cypherpunks began envisioning a stateless digital form of money that cannot be censored and their collaborative pursuit created a movement akin to the 18th Enlightenment.
At The 7th Conference on Computers, Freedom, and Privacy, Burlingame, CA. in 1997, Tim May equated money with speech, and argued that restricting digital cash may impinge on free speech, for spending money is often a matter of communicating orders to others, to transfer funds, to release funds, etc. In fact, most financial instruments are contracts or orders, instead of physical specie or banknotes (13).
Montesquieu: Laws that secure inalienable rights can only be found in Nature
In his influential work The Spirit of Laws (1748), Montesquieu wrote, “Laws ... are derived from the nature of things … Law, like mathematics, has its objective structure, which no arbitrary whim can alter". Similarly, once a block is added to the end of the Bitcoin blockchain, it is almost impossible to go back and alter the contents of the block, unless every single block after it on the blockchain is altered, too.
Cypherpunks knew that whereas alienable rights that are bestowed by law can be deprived by legislation, inalienable rights are not to be created but can be discovered by reason. Thus, laws that secure inalienable rights cannot be created by humankind but can be found in nature.
The natural laws employed in Bitcoin to enshrine the inalienable monetary right of every human being include its consensus algorithm, and the three natural laws of economics (self-interest, competition, and supply and demand) as identified by Adam Smith, father of modern economics.
Regarding mathematics, bitcoin mining is performed by high-powered computers that solve complex computational math problems. When computers solve these complex math problems on the Bitcoin network, they produce new bitcoin. And by solving computational math problems, bitcoin miners make the Bitcoin payment network trustworthy and secure, by verifying its transaction information.
Regarding economic laws, in accordance with the principle of game theory to generate fairness, miners take part in an open competition. Lining up self-interests of all in a network, with a vigilant balance of risk and rewards, rules are put in force sans the application of any exterior pressure. "Bitcoin regulates itself through the spontaneous force of nature, flourishing healthy price discovery and competition in the best interest of everyone," to borrow the words of Hayase (2020).
A Non-monetary Economy as Visualized by the Tofflers
In their book, Revolutionary Wealth (2006), futurists Alvin Toffler and his wife Heidi Toffler toy with the concept of a world sans money, raising a third kind of economic transaction that is neither one-on-one barter nor monetary exchange. In the end, they settle on the idea that the newer non-monetary economy will exist shoulder-to-shoulder with the monetary sector in the short term, although the latter may eventually be eclipsed by the former in the long run. What both the Tofflers' The Third Wave (1980) and Revolutionary Wealth bring into question is the very premise of monetary exchange. The vacuum left over by cash in such a non-monetary economy may be filled up by Bitcoin as a cryptocurrency.
Satoshi Nakamoto Nominated for Nobel Prize by UCLA Finance Prof.
UCLA Anderson School Professor of Finance Bhagwan Chowdhry nominated Satoshi Nakamoto for the 2016 Nobel Prize in Economics on the following grounds:-
It is secure, relying on almost unbreakable cryptographic code, can be divided into millions of smaller sub-units, and can be transferred securely and nearly instantaneously from one person to any other person in the world with access to internet bypassing governments, central banks and financial intermediaries such as Visa, Mastercard, Paypal or commercial banks eliminating time delays and transactions costs.... Satoshi Nakamoto’s Bitcoin Protocol has spawned exciting innovations in the FinTech space by showing how many financial contracts — not just currencies — can be digitized, securely verified and stored, and transferred instantaneously from one party to another (14).
Fb link: https://www.facebook.com/hongkongbilingualnews/posts/947121432392288?__tn__=-R
Web link: https://www.hkbnews.net/post/the-intellectual-foundation-of-bitcoin%E6%AF%94%E7%89%B9%E5%B9%A3%E7%9A%84%E6%99%BA%E8%AD%98%E5%9F%BA%E7%A4%8E-by-chapman-chen-hkbnews
Disclaimer: This article is neither an advertisement nor professional financial advice.
End-notes
  1. https://bitcoinmagazine.com/articles/bitcoin-is-the-technology-of-dissent-that-secures-individual-liberties
  2. https://medium.com/hackernoon/why-sir-isaac-newton-was-the-first-bitcoin-maximalist-195a17cb6c34
  3. https://data.bloomberglp.com/professional/sites/10/Bloomberg-Crypto-Outlook-April-2020.pdf
  4. https://www.youtube.com/watch?v=EYhEDxFwFRU&t=1161s
  5. https://www.youtube.com/watch?v=m6fkdagNrjI
  6. http://youtu.be/mlwxdyLnMXM
  7. https://miltonfriedman.hoover.org/friedman_images/Collections/2016c21/IEA_1970.pdf
  8. https://www.youtube.com/watch?v=6MnQJFEVY7s
  9. https://www.coindesk.com/economist-milton-friedman-predicted-bitcoin
  10. https://www.aier.org/research/prospects-for-a-monetary-constitution/
  11. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3238472
  12. https://www.activism.net/cypherpunk/crypto-anarchy.html
  13. http://osaka.law.miami.edu/~froomkin/articles/tcmay.htm
  14. https://www.huffpost.com/entry/i-shall-happily-accept-th_b_8462028
Pic credit: Framingbitcoin
#bitcoin #bitcoinhalving #jamesBuchanan #MiltonFriedman #AlvinToffler #FirstAmendment #LudwigVonMises #TimMay #freeMarket # SatoshiNakamoto #FriedrichHayek #Cypherpunk #Cryptocurrency #GoldStandard #IsaacNewton
submitted by HKBNews to Bitcoin [link] [comments]

Crypto Mining Biz best bitcoin site 2020,crypto mining biz withdrawal proof,New bitcoin trusted site Bitcoin Mining Website 2020 - Bitcoin Miner Desktop bitcoin miner break down/ How i mine Crypto / Earn gift cards online with paying websites ELE 432- FPGA Bitcoin Miner New Bitcoin Mining Site 2020  Free 100 GHs  Crypto Allies NP

How Much a Miner Earns . The rewards for bitcoin mining are halved every four years or so. When bitcoin was first mined in 2009, mining one block would earn you 50 BTC. In 2012, this was halved to One useful feature is the profit reports feature because this feature will help you know if your mining is profitable or not. The latest version of this software is Bitcoin Miner 1.27.0. BTCMiner. BTCMiner is an Open Source Bitcoin Miner for ZTEX USB-FPGA modules 1.5. BTCMiner comes with the following features: A few weeks ago, we went to the 24th Financial Cryptography (FC) conference and the Workshop on Trusted Smart Contracts (WTSC) workshop, where we presented our work on smart contract bug categorization (see our executive summary), and a poster on Echidna. Although FC is not a blockchain conference, it featured several blockchain-oriented presentations this year […] Dinkin tweeted on December 2. “Feels a little off-brand.” Dinkin wrote that Bitcoin was the digital currency being mined, but CoinHive, the company that provided the code for the miner, only works with Monero, a competing coin. Surreptitious cryptocurrency mining has become a bit of a phenomenon of late. What is Bitcoin? Bitcoin is the new currency that was found or created in the year of 2008. Bitcoin is the crypto-currency, which is also known as the decentralized digital currency, which doesn’t have a single administrator or even central bank that is the transaction was done without having a middle man.Using the cryptography, the transactions are verified with the help of network nodes.

[index] [11684] [8812] [1900] [6876] [29121] [23557] [1203] [30751] [29657] [2336]

Crypto Mining Biz best bitcoin site 2020,crypto mining biz withdrawal proof,New bitcoin trusted site

It uses a peer-to-peer cryptography system that generates the cryptocurrency (Bitcoin) into your account (wallet). Generated through a process called "mining", it represents a transaction verifier ... Slyam.in New bitcoin mining site 2020 Crypto Allies NP - Duration: 7:07. Crypto Allies NP 30 views. 7:07. Turn Simple Credit Spreads into a Mathematically Guaranteed Money Machine ... FREE CRYPTO MINING APPS - Cryptocurrency For Beginners BITCOIN & MORE (2020) Pi Network iOS Android - Duration: 8:06. Side Hustles - Making Money Online 36,009 views 8:06 crypto mining biz is long time project this site is old time working my deposit this site 250$ and I withdraw this site 100$ today I vadio show my daily withdrawal 15$ crypto mining biz site my ... Bitcoin Mining with FPGAs (EC551 Final Project) - Duration: 6:11. Advanced Digital Design with Verilog and FPGAs - Boston University 5,295 views

Flag Counter